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Outline

* |ntroduction to Safe and
Sustainable Water Resources
(SSWR) Cyanobacteria Project

* Ecological Modelling of
Cyanobacteria

— Machine Learning Approaches
— Bayesian Approaches

* The Role of Open Science in our
Research

* Recent news — N.E. Monitoring
(Thanks Hilary Snook!)
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Cyanobacteria

 “Bluegreen Algae”

* Photosynthetic bacteria

* Found in fresh and salt water
* Amazing diversity

* Many can fix nitrogen

* Resting spores

e Mobile — can harvest nutrients
from sediments

° Produce over 80 known tOX|nS flickr.com/photos/jurvetson/30399340
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Cyanobacteria Blooms

e Human and Animal Health Risks
* Hypoxia and Fish Kills
e Water Treatment Costs

* Lake Aesthetics —Clarity & Smell

e Quality of Life
— Recreational Opportunities
— Property Values
— Tax Revenues
— Employment
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Cyanobacteria, nutrients, and land use - a
nexus for sustainable water resources and
human health protection

» Ecology: Develop predictive models to relate nutrient loads, land use/land cover,
socioeconomic factors, and climate to the frequency, location, and severity of
cyanobacterial blooms in lakes of the United States

Contact: Jeff Hollister and Betty Kreakie

* Toxicology: Clarify cyanotoxin effects on mammalian endpoints and exposure
biomarker identification for human health risk assessment

Contact: Neil Chernoff

 Epidemiology: Characterize cyanotoxin occurrence and nutrient concentrations in
US surface waters. Analyses includes assessing risk to human health via multiple
exposure scenarios to recreational and drinking waters

Contact: Betsy Hilborn

 Remote Sensing: Describe the retrieval of chlorophyll a concentrations, and water
clarity from airborne hyperspectral data and predictions of changes in trophic status
in Northeastern Lakes and Reservoirs

Contact: Darryl Keith



Ecological Modelling

flickr.com/photos/8640561@N07/2479051666/
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“We are trying to combine what we know from
field data, what we know from modeled data,
and what we (think) we know about
cyanobacteria and create predictive models of
the probability of bloom events.”
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National Lake Assessment
(NLA)

* Spatially balanced, probabilistic sample of 1000+
lakes

 Developed to provide inference on the condition of
the lakes in the contiguous United States at the
national and ecoregional level

* Includes freshwater lakes greater than 4 hectares
(excluding Great Lakes and Great Salt Lake) and
deeper than 1 meter

* First Survey in 2007; Second in 2012, Third planned
for 2017.
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Map of 2007 NLA Samples
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Cummulative Distribution Function by Cyano Biovolume Category
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Cummulative Distribution Function by Cyano Biovolume Category
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Map of 2007 NLA Samples
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Random Forest:

Definition 1.1. A random forest is a classifier
consisting of a collection of tree-structured
classifiers {h(x, ©,), k =1,...} where the {O,} are
independent identically distributed random
vectors and each tree casts a unit vote for the
most popular class at input x.

Breiman, L. 2001. Random forests. Machine learning 45:5-32.
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CART Model: Classification and
Regression Trees

https://www.otexts.org/1512
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Random Forest

— Can throw any kind of data at it
* Included highly correlated variables and NAs

— Can not over fit

* No weird pruning rules
— Measures of variable importance

— Model verification build directly into the
algorithm

— Computationally fast and easy to code

* Even with very large data sets
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Summary of Random Forest

* Select training data (~2/3) with replacement for each
tree

 Randomly select subset of variables
— Actually done for each split

* Make a tree

* Record Out-Of-Bag (OOB) errors
 Permute variables

 Record altered OOB

* Repeat 10,000 times

**Each tree votes for a classification
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Random Forest Analysis

Response Variable Predictor Variables (WQ)

* Chlorophyll a Category * Geographic (5)
* Morphometry (14)
e NLCD 3km (17)
* Water Quality (34)
* Other (2)

18
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Random Forest Analysis
Selected WQ Predictors
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Random Forest Analysis

Water quality data
difficult/expensive to obtain

What if we just use the GIS
ready predictors to assign Chl a
category?

20
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Random Forest Analysis
Selected GIS Predictors
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Random Forest Modelling

WQ Predictors

VARIABLE PERCENT

K 1.00
NPratio 1.00
NTL 1.00
PTL 1.00
TOC 1.00
TURBE 1.00
WSA_ECO9 1.00
ORGION 0.46
DOC 0.21
DEPTHMAX 0.06

OOB Error Rate: 21%

GIS Predictors

AlbersX 1.00
CropsPer_3000m 1.00
EvergreenPer_3000m 1.00
W5A_ECO9 1.00
MeanDepthCorrect 0.99
AlbersY 0.40
ELEV_PT 0.04
MaxDepthCorrect 0.01

OOB Error Rate: 32%

22
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Future Modelling Efforts

e Explore temporal dynamics and phytoplankton
community turnover using a long-term regional
data set

e Bayesian forecasting of predicted cyanobacteria
bloom risk for lakes in the continental United
States

* Develop regional models based on citizen science
data (e.g. URI Watershed Watch Data)

23
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Water Quality Modeling Approaches

* Process-based models, e Statistical models, Inductive
Deductive reasoning reasoning

= Conceptually dividing a = Statistical models are mostly
system into subsystems driven by data

= Equations are derived based = Data - often limited to a
on existing knowledge and specific region (local or
general laws of physics subregion)

= Solving equations for all = We usually don’t combine
subsystems together subsystem models

= Box-and-arrow charts plus = Statistical modeling often
differential equations does not incorporate existing

knowledge — we reinvent the
wheel every time we have a
new data set.
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Model Updating

Adaptive Management

e Continuous observation of the ecosystem to

gauge the impact of policies and management
actions

 Communicating the ecosystem's status with
policy makers and managers

* Updating the management actions and
recommendation

Walters, 1997, Challenges in adaptive management of riparian and coastal ecosystems
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High Prediction Uncertainty

NEEM W ASP Neu-BERN
5 - 5 1 . 5 .
............ D2 2 "1“: T e
> A - ‘.g’o
E 3 Te¥SX o 3 . ‘0% % 3 ke .
s Fee «* A< - 20} D30 S A
> 1 * L e - 1 - - 1 o *
LS - - *
-1 -1 i -1
- -1 1 3 5 -1 1 3 5 -1 1 3 5
3 5 1 - 5 5 :
© A ‘0‘ RS 00; g -
:L—IIJ At ’.0..'... I .’0‘ ....... 4 “Q‘
oo 1 o A g - . ‘g €33
- 3 > hs * B 3 . % 3 ‘:‘ s
Eg ] - “ ‘g& - ‘0‘ P 3‘:
2 1 R 2 2
] : - .
o 1 1 s 1 s
g 1 2 3 4 1 2 3 4 1 2 3 4
5 hd : 5 hd 5 1 -
* o * o *
4 p 3 4 1 +s 4 $e
o fe ey »“ | EEEEEEE ‘”{“ .......... - ““..
e .
ﬁ 3 ‘. 3:‘& 3 ‘00 s 0, 3 ::“‘ -
] “‘..‘ ]l e “‘0‘ P * & e
> 09;0‘ 2_‘ “oo > - > &
2 3 4 2 3 4 2 3 4

Log Predicted Chl a (ug/L)

Stow et al., 2003, Comparison of Estuarine Water Quality Models for Total Maximum Daily Load
Development in Neuse River Estuary




<EPA

Quantifying Uncertainty

Sources of Uncertainty

* Natural ecosystem variability

* Current knowledge of environmental processes

 Model structure uncertainty

* Data and observation (e.g., observation error, missing data)
 Computational restrictions
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Other Considerations

* Small/incomplete data set accommodation
* Visual interface — Communication

28
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Network-based Bayesian Model

Model Formulation

e Establishing cause-effect diagram using
biological/ecological knowledge (box-and-
arrow charts)

* Quantifying the links
* Model updating
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Proposed Network-based Bayesian Model
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Model Evaluation & Updating

TN Prior

 Prior: 2007 NLA data set
e Likelihood: 2012 NLA data set
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Model Evaluation & Updating

Prior ® Likelihood
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 Prior: 2007 NLA data set
e Likelihood: 2012 NLA data set
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Model Evaluation & Updating

Posterior « Prior ® Likelihood
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 Prior: 2007 NLA data set
e Likelihood: 2012 NLA data set




<EPA

Benefit of Network-based
Modeling

 Comprehensive —summarizing all available
information

* Flexibility — both empirical models and
mechanistic models can be part of a network
model

* Updating — over space and time

e A starting point — no need to wait for all
necessary information
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Previous Applications (1)
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Johnson et al., 2010, An Integrated Bayesian Network approach to Lyngbya majuscula bloom initiation
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Previous Applications (2)

Using the observational data sampled during the
growing season in 2007-2011, a Bayesian hurdle
Poisson model was developed to predict
cyanobacteria abundance in lake Paldang, South
Korea.

Cha et al, 2014, Probabilistic Prediction of Cyanobacteria Abundance in a Korean Reservoir using a Bayesian Poisson Model
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What is Open Science?

 Many Flavors

* But many agree on: R
— Openness and transparency /

— free access to code, data, mm

publications S i
— repeatable science
— reusable - -

— web enabled
— degrees of openness

*See details of definition from a question | posed to twitter at:
https://storify.com/jhollist/what-is-the-definition-of-open-science

38
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Why Open Science?

* Expected and/or required

— Increasing Access to the Results
of Federally Funded Scientific
Research

e John Holdren, Director, White
House OSTP

e Feb 2013
— NSF
— Publishers

o #PLOSfail/#PLOSwin
e Carly Strasser at DATA PUB

39


http://datapub.cdlib.org/2014/03/13/lit-review-plosfail-and-data-sharing-drama/
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e Benefits

Why Open Science?

— Open Data = More citations (Piwowar et al. 2007)
— Up-to-date statistics on readership (e.g PLOS ALM)
— Accelerates research and discoveries (e.g. Woelfle et al.

in 2004-2005
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saved by scholars ’ Bl 4Mendeley readers

\ viewed by scholars ’ @ 129 Plos pdf views

‘ discussed by public \ o 3 Twitter tweets

ImpactStory Metrics
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http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000308
http://article-level-metrics.plos.org/
http://www.nature.com/nchem/journal/v3/n10/full/nchem.1149.html
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000308
https://impactstory.org/JeffreyHollister/product/oiaf96qu7o20qlxb0i2s7i2h
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Why Open Science?

* |t keeps us honest
* Prevents this:

Ethan White W Follow
@ethanwhite

Why #openscience? MT @tpoi: Sent 5 emails to ask
for data. 4 emails addresses not in service anymore.
One negative reply. That went poorly.

11:56 AM - 11 Jun 2014

16 RETWEETS 6 FAVORITES ¢ 13 %

41
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Why Open Science?

* Hot off the press:

— Weecology Blog: “Sharing in Science: my full reply
to Eli Kintisch”

— Living in an lvory Basement: "Thoughts on open
science — my response to Eli Kintisch”

— Science Careers Article by Eli Kintisch: Give, and It
Will Be Given to You

42


http://jabberwocky.weecology.org/2014/06/23/sharing-in-science-my-full-reply-to-eli-kintisch/
http://ivory.idyll.org/blog/2014-eli-conversation.html
http://sciencecareers.sciencemag.org/career_magazine/previous_issues/articles/2014_06_10/caredit.a1400146
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Open Science and Our research

* Open Access

®

* Open Source open source

Initiative
* Open Data
OPEN EXRNA

43
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http://www.plosone.org/article/info:doi/10.1371/journal.pone.0025764
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0069518
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0081457
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Open Access: What’s next?

* Goal: All publications open access

— Journal choice (e.g. PeerJ, F1000Research, elife,
Frontiers In, etc.)

— Funds to pay for OA charges in traditional journals

GPLOS [ (@ -re  Peerd

F1O00
Research
45



http://www.plosone.org/
http://www.plosone.org/
http://elifesciences.org/
http://elifesciences.org/
http://f1000research.com/
http://f1000research.com/
https://peerj.com/
https://peerj.com/
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Open Source: What we've done?

https: aithub. com/USEP:
GeaDr § wesbewdRantic— | 0RD Ackaton onr. () Moo Pt

MMMMMM

* Use Open Source i
— R, Python = =

* Supplemental |
Information

e Github



https://github.com/USEPA
https://github.com/USEPA
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1287364/Text_S1.txt
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1287364/Text_S1.txt
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Open Source: What Next

* Continued use of Github
— R packages
— manuscripts (e.g., Ram, 2013)

— posters/presentations (e.g.,
@kbroman)

* Working with the
community

sbftware carpentry
— Software Carpentry

— Other groups
47



https://github.com/karthik/smb_git
https://github.com/kbroman/Talks_GivingTalks
https://github.com/
https://github.com/
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Open Data: What we’ve done

* Supplemental Info
* Portals

— EPA Environmental Dataset

Gateway
— APEX/Oracle

EPA Environmental'Dataset/Gateway (EDG)

Connecting EPA‘s Environmental Resources

HOME ABOUT SEARCH BROWSE DATA REUSE RESOURCES

Details Review Relationships
Lakes Ecosystem Services Download Package

3 Identification Information
Title: Lakes Ecosystem Services Download Package
Originator: US-EPA
Publication
20130515
Date ’

Abstract: This data download packa
package are used in support of the Lake Ecosystem Services application available at the secondary linkage listed above. Layers
contained in thi e: polygons and centroids of lakes sampled as part of EPA's New England Lakes and Pond
project and the National Lakes Assessment project; CMAQ annual nitrogen deposition (2002) and nitrogen projections (2020);
NASS Cropland Data Layer; USGS NHD; NLCD 2001; Omenik levels 1, II and 111 ecoregions for the northeast Region; 2010 census
population for the northeast region in raster format; modeled nitrogen and phosphorus loads for NHD lakes in the USGS MRB1
region; and level 3 and level 9 Wadeable Streams Assessment ecoregions

e contains Esri 10.0 MXDs eodatabases and copy of this FGDC metadata record. The data in this

The Lakes Ecosystem Services Online GIS provides geospatial visualization, query, and analysis tools. The Online GIS was built on
the data collected as part of our r This includes information such as the National Lakes
Assessment field data, USGS SPARROW results, National Land Cover Dataset, crop data, etc. With the various tools provided in
the Online GIS, users can make and print maps from the datasets provided, query and display data with different cutpoints
conduct buffer analyses around lakes and summarize key datasets, and generate multi-variate radar graphs of water quality
data.

h into ecosystem services in lak
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Open Data: What's Next

* Linked Open Data T
* Web APIS OnthewebM

Machine-readablé?
Non-proprietary

— Use HTTP RDF standards
by Linked RDF :
« GET, POST, PUT, etc. OUR DATA 57
* Access data
— Programmatically
— Machine-to-machine R

— rOpenSci: great example Open

-y

49
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iOS Simulator - iPad / i05 7.1 (11D167)
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Thank you!

Questions?

Jeff Hollister - hollister.jeff@epa.gov
Betty Kreakie - kreakie.betty@epa.gov
Farnaz Nojavan - nojavan.farnaz@epa.gov
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